Alterations in ²²Na fluxes of arterial smooth muscles of spontaneously hypertensive rats

J. ALTMAN, R. GARAY, A. PAPADIMITRIOU, & M. WORCEL

INSERM U25, Unité de Recherches sur la Pathologie Rénale, Hôpital Necker, 75015 Paris, France and INSERM U7, Physiologie & Pharmacologie, Hôpital Necker, 75015 Paris, France

The rats obtained in 1963 by Okamoto & Aoki are spontaneously hypertensive (SH rats). These SH rats present an increase in vascular resistance which seems to be associated with an altered reactivity of vascular smooth muscle (Hausler & Finch, 1972) which could be due to changes in excitation or excitationcontraction coupling processes. Jones (1973, 1974) has observed an increased K+ and Na+ turnover. In order to confirm these findings we have analyzed Na+ turnover from tail arteries obtained from male SH and normotensive Wistar (NW) rats of the same age which have been used as controls. ²²Na fluxes have been studied after equilibration of intracellular and extracellular specific activities by incubating the arteries for 90 min at 35°C gassed with 95% O2 and 5% CO2 in a physiological solution containing the tracer and having the following composition (mm): NaCl 120.8, KCl 5.9, CaCl₂ 1.5, MgCl₂ 1.2, NaHCO₃ 15.5, NaH₂PO₄ 1.2 and glucose 11.5. Effluxes were performed using a superfusion technique (Hamon, Papadimitriou & Worcel, 1976) at 35°C. The efflux

curve can be separated into a series of exponential components among which the intermediary Be-k2t corresponds to the membrane limited efflux from the smooth muscle cells (Garay, Moura & Worcel, unpublished observations). 22Na efflux rate k2 was increased in 8 weeks old SH rats as well as the smooth muscle cell Na+ compartment B (Table 1). The efflux rate becomes normal at 12 and 20 weeks SH rats. The compartment B is normal at 12 weeks and smaller than in controls at 20 weeks. The action of ouabain on ²²Na efflux rate k, was studied on arteries from 8 weeks old rats in order to quantify its effects on the Na⁺ pump and to distinguish between ouabain sensitive and insensitive fractions of ²²Na efflux.

From these experiments we could determine that ouabain sensitive efflux in completely blocked muscles is identical in NW (0.106 min⁻¹) and SH rats (0.099 min⁻¹). According to these values, it appears that the ouabain insensitive fraction is greatly increased (+63%) in SH (0.067 min^{-1}) as opposed to NW rats (0.041 min⁻¹). Surprisingly the K_m constants for ouabain action on the Na+ pump have been found to be different: $K_{SH} = 3.3 \times 10^{-4}$ M and $K_{NW} = 7.6 \times 10^{-4}$ M.

In conclusion at an early stage of development of hypertension there is an increase in ouabain insensitive, membrane limited ²²Na efflux from arterial smooth muscle cells. This is accompanied by an increased Na+ content in the cellular compartment and an alteration in the sensitivity of the Na+ pump to ouabain which is difficult to interpret at the moment.

This work was supported by grants from the I.N.S.E.R.M. and D.G.R.S.T., France.

Table 1 ²²Na efflux from arterial smooth muscle cells of NW and SH rats

Age	8 We NW		eks SH		12 Weeks		20 Weeks SH NW				SH	
k ₂ (min ⁻¹)	0.144 ± 0.005(1)		0.173*±0.012		0.145 ± 0.004		0.153 ± 0.004		0.139±0.003		0.143 ± 0.004	
B (mmol/kg wet weight)	2.7	± 0.09	3.1	*±0.12	3.0	± 0.15	2.9	± 0.16	3.2	± 0.17	2.5**	± 0.14
n		7		6		7		9		10		11

(1) mean \pm s.e. mean; *P < 0.05; **P < 0.01.

References

HAMON, G., PAPADIMITRIOU, A. & WORCEL, M. (1976). Ionic fluxes in rat uterine smooth muscle. J. Physiol. (Lond.), 254, 229-243.

HAUSLER, G. & FINCH, L. (1972). Vascular resistance and reactivity to various vasoconstrictor agents in hypertensive rats. In Spontaneous Hypertension, ed. Okamoto, K. pp. 97-102. Igaku Shoin: Tokyo, Springer Verlag: Berlin, Heidelberg, New York.

JONES, A.W. (1973). Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. Influences of aldosterone, norepinephrine and angiotensin. Circ. Res., 33, 563-572.

JONES, A.W. (1974). Altered ion transport in large and small arteries from spontaneously hypertensive rats and the influence of calcium. Circ. Res. 34-35, Suppl. I, 117-122.

OKAMOTO, K. & AOKI, K. (1963). Development of a strain of spontaneous hypertensive rats. Jap. Circ. J., 27, 282-293.